Bacteria Sampling Report Waterbody: Three Mile Lake Three Mile Lake Date Sampled: 7/17/2013 | Location | E. coli | Total
Coliforms | Interpretation | |-----------|---------|--------------------|--| | Access | 20 | 2100 | Water meets bacteriological standards for safe swimming. | | Little Lk | 4.0 | 600 | Water meets bacteriological standards for safe swimming. | | North | 4.0 | 72 | Water meets bacteriological standards for safe swimming. | Bacterial counts are expressed as the number of Colony Forming Units per 100 milliliters (CFU/100mL). For full body contact recreation (including swimming) counts of E. coli should not exceed 130 (CFU/100mL)as a monthly geometric mean of at least five samples per the State of Michigan standard, or single samples should not exceed 298 (CFU/100mL) [235 CFU/100mL in a designated bathing beach area] per Federal (EPA) guidelines. Current recreational water quality standards do not rely on Total Coliform counts. Approved by Mrs. Jainee Conroy, Technical Services Manager Date 22-Aug-13 PLM Lake & Land Management Corp P.O. Box 132 Caledonia MI 49316- Phone: (616) 891-1294 Customer Waterbody Sample Information Three Mile Lake Three Mile Lake Date: 8/12/2013 Site: Deep Hole ### **On-Site Results** | Depth | Temperature | Dissolved Oxygen mg/L % | | Dissolved Oxygen (mg/L) | |-------|-------------|-------------------------|-----|-------------------------| | (m) | (degrees C) | IIIg/L | | | | 0 | 25.8 | 11.5 | 121 | 0 5 10 15 | | 1 | 25.1 | 11.5 | 123 | | | 2 | 24.9 | 11.5 | 121 | 5 1 ■ Temperature | | 3 | 24.8 | 10.8 | 118 | £ 4 | | 4 | 23.1 | 9.9 | 109 | Dissolved | | 5 | 20.2 | 5.7 | 59 | 10 Oxygen | | 6 | 18.9 | 1.1 | 14 | 0 10 20 30 | | 7 | 17.5 | 0.3 | 4 | Temperature (C) | | 8 | 17.6 | 0.2 | 2 | romporataro (o) | | 9 | 17.3 | 0.2 | 2 | | | 10 | 17.1 | 0.1 | 11 | | | | | | | | Secchi Disk Depth 3.4 meters Thermocline Depth 4.0 meters #### **Analytical Results** | Parameter | Result | Units | Interpretation | |-------------------------------|--------|------------|--------------------------------------| | Fecal Bacteria (E. coli | | CFU/100 mL | N/A | | Conductivity | 153 | uS/cm | | | Total Dissolved Solids | 100 | mg/L | Low concentration of dissolved salts | | pH | 8.3 | S.U. | Water is slightly alkaline | | Alkalinity | 59 | mg CaCO3/ | LWater is very soft | | Total Phosphorus | 8 | ug/L | Slightly phosphorus enriched | | Nitrates | 300 | ug/L | Slightly nitrogen enriched | | Chlorophyll | N/A | | | ### **Trophic State Evaluation** | TCI | T | I- : - | Chatan | _ | |-----|------|----------|--------|---| | TSI | Iron | n_{1C} | Status | | | | | | | | Based on Secchi Disk Depth 42 mesotrophic Based on Total Phosphorus 30 oligotrophic Based on Chlorophyll N/A # **CHECK** Water Quality Monitoring Report Customer Waterbody Sample Information Three Mile Lake Three Mile Lake Date: 4/15/2013 Site: Deep Hole ### **On-Site Results** | Depth Temperature Dissolved Oxygen | | |------------------------------------|----------| | (m) (degrees C) mg/L % | | | 0 8.5 11.7 99 | | | 1 8.4 11.5 98 | | | 2 8.4 11.4 97 | Ę | | 3 8.4 11.3 97 | Depth (n | | 4 8.2 11.1 95 | Del | | 5 7.9 10.6 90 | | | 6 7.9 9.5 82 | | | 7 7.9 8.5 73 | | | 8 7.9 8.2 69 | | | 9 7.9 8.0 68 | | | 10 7.9 8.0 67 | _ | Secchi Disk Depth 2.8 meters Thermocline Depth meters #### **Analytical Results** | Parameter | Result | Units | Interpretation | |-------------------------------|--------|------------|--------------------------------------| | Fecal Bacteria (E. coli | | CFU/100 mL | N/A | | Conductivity | 148 | uS/cm | | | Total Dissolved Solids | 100 | mg/L | Low concentration of dissolved salts | | рН | 8.1 | S.U. | Water is slightly alkaline | | Alkalinity | 51 | mg CaCO3/ | LWater is very soft | | Total Phosphorus | 10 | ug/L | Slightly phosphorus enriched | | Nitrates | 300 | ug/L | Slightly nitrogen enriched | | Chlorophyll | N/A | | | #### Trophic State Evaluation | TSI | Tro | phic | Sta | tus | |------|-----|-------|-----|-----| | 1 21 | 110 | JIIIC | Ju | cus | Based on Secchi Disk Depth 45 mesotrophic Based on Total Phosphorus 33 meso-oligotrophic Based on Chlorophyll N/A #### Conclusions - Conditions are good for fish growth. - Minimum dissolved oxygen is adequate for good fish production. - pH is within acceptable limits. - Sample is somewhat phosphorus enriched. Create natural buffer between lawn & lakeshore. - Repeat LakeCheck in Fall. - WARNING, condition requires immediate attention. - CAUTION, condition requires further evaluation. - OK. condition within acceptable limits. - NEUTRAL, condition neither good nor bad. #### Notes Report describes conditions at the time the sample was collected. Approved by Date 11/5/2013 Mrs. Jaimee Conroy, Technical Services Manager FROM YOUR PLM Lake & Land Management Corp P.O. Box 132 Caledonia MI 49316- Phone: (616) 891-1294 # LAKE CHECK WATER QUALITY MEASUREMENTS Conductivity and Total Dissolved Solids (TDS) measure the total amount of material dissolved in the water. Higher values indicate potentially richer, more productive water, whereas lower values indicate potentially cleaner, less productive water. Localized increases in conductivity and TDS may indicate inputs of groundwater or other nutrient-enriched water. [Note: Human activities that result in nutrient pollution (e.g., fertilizer runoff) can increase the productivity of algae and other organisms without raising conductivity/total dissolved solids very much. If nutrient pollution is occurring, the total phosphorus concentration is a much better indicator of potential productivity.] pH describes the balance between acids and bases in the water. Neutral values of pH (between 6 and 9) are desirable. Low pH values typically result either from the growth of bog vegetation (such as peat moss), acid precipitation ("acid rain"), or acid runoff (as in acid mine drainage). Excessive growth of certain plants and algae can raise pH values above 9.0 or 10.0. **Alkalinity** measures the concentration of carbonates and bicarbonates in the water. These compounds and other ions associated with them make water "hard". High alkalinity lakes are hardwater lakes, while low alkalinity lakes are softwater lakes. Different kinds of plants, algae, and other aquatic organisms live in hardwater than in softwater. Alkalinity also influences the effectiveness of some herbicides and algicides. Alkalinity is a basic characteristic of water, but is neither inherently good nor bad. **Total Phosphorus** measures the total (organic and inorganic, dissolved and particulate) amount of phosphorus in the water. Phosphorus is usually the plant nutrient (i.e., fertilizer) that controls the amount of algal growth in lakes and ponds. Most Midwestern lakes have more phosphorus and more algae than is desirable, so lower values are generally better, though very unproductive water bodies typically support little fish production. **Nitrate** measures the total inorganic amount of nitrogen in the water. Nitrogen is the plant nutrient (i.e., fertilizer) most likely to control the amount of rooted plant growth in lakes and ponds. Most Midwestern lakes have more nitrogen and more rooted plant growth than is desirable, so lower values are generally considered better **Trophic State Indices** calculate the trophic status of the waterbody. Waterbodies are classified as oligotrophic, mesotrophic, eutrophic or hypereutrophic depending on the overall amount of plants, algae and other organisms the waterbody supports. Lakes of different trophic states vary in a number of chemical characteristics and support different types of organisms (see the enclosure "Lake Trophic States and Eutrophication"). Thus the trophic state of a waterbody provides a wealth of information concerning the types of organisms living in the waterbody, the processes likely to occur there and the kinds of problems to be expected. Trophic State Index values can be calculated from a number of variables. LakeScan calculates Carlson's Trophic State Index (TSI) from total phosphorus, Secchi disk depth and chlorophyll (separate TSI values are calculated for each of the variables that was measured as part of your LakeCheck package). **Dissolved Oxygen** is a measure of the amount of oxygen dissolved in the water. Oxygen is needed by fish and other aquatic organisms to allow them to "breath" underwater. Plants and algae produce oxygen by photosynthesizing during the day and use oxygen for respiration at night. **Temperature** provides information about the kinds of fish that can grow in a lake, information necessary for interpretation of other parameters, and information about the extent to which a lake is stratified into layers having water of different temperatures. If the lake is stratified, the **thermocline depth** tells how deep the surface layer of warm water is. **Fecal Indicator Bacteria** (*E. coli*) measurements count the number of live fecal indicator bacteria in the sample. These bacteria are considered reliable indicators of fecal contamination—when they are found in a pond or lake, it is very likely that the water is being contaminated by animal feces. Contamination can potentially be derived from a number of sources, including failed septic systems, agricultural runoff, or waterfowl or wildlife droppings. - E. coli counts of 300 (CFU/100 mL) and above in a single sample are considered to represent conditions that are UNSAFE for swimming and other body contact recreation. - E. coli counts of 130 (CFU/100 mL) and above averaged (using a geometric mean) over measurements made during a 30-day period are considered to represent conditions that are UNSAFE for swimming and other body contact recreation. When values of 130 (CFU/100 mL) or higher but less than 300 are encountered, LakeCheck rates the safety of the water for swimming as questionable. - E. coli counts below 130 are considered safe for swimming and other body-contact recreation We recommend prompt retesting whenever Fecal Indicator Bacteria counts exceed 100 (CFU/100 mL) to determine whether contamination is an ongoing problem. If frequent contamination is detected, steps to identify and eliminate the source of contamination are highly recommended.